Cyclotriphosphazene appended porphyrins and fulleropyrrolidine complexes as supramolecular multiple photosynthetic reaction centers: steady and excited states photophysical investigation.
نویسندگان
چکیده
New multiple photosynthetic reaction centers were constructed from cyclophosphazene decorated multiporphyrin chromophores and a fulleropyrrolidine having a pyridine ligand (FPY). The excited state electron transfer in the self-assembled donor-acceptor assembly was investigated by using steady state absorption and emission, time-resolved emission spectroscopy and nanosecond laser flash photolysis. The effect of metal (Zn(2+)) coordination to porphyrin units in the multiporphyrin arrays on cyclophosphazine scaffold (P3N3Zn) was studied by comparing with metal free porphyrin assembly on a cyclophosphazene scaffold (P3N3). In P3N3Zn, the decrease of absorption and fluorescence intensity and the lowering of the amplitude of longer fluorescence lifetime with increase of FPY concentration reflect the formation of a ground state complex with an association constant of ∼14,910 M(-1). When compared to the metal-free complex P3N3, the metal-coordinated derivative P3N3Zn exhibited shortening of the singlet and triplet state lifetimes and lowering of the singlet and triplet quantum yields. The cause of the decrease of the triplet quantum yields by insertion of zinc metal is discussed along with the possible non-planarity of the porphyrin ring. From the fluorescence lifetime measurements for the P3N3Zn-FPY mixture, it is proposed that self-assembly of the donor-acceptor complex leads to charge separated species with a rate constant of 7.1 × 10(9) s(-1). The decrease of triplet state intensity and lifetime of the P3N3Zn in the P3N3Zn-FPY complex from the nanosecond transient absorption studies support the occurrence of intermolecular electron transfer in the triplet state.
منابع مشابه
Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor.
Multiple photosynthetic reaction centres have successfully been constructed using supramolecular complexes of zinc porphyrin dendrimers [D(ZnP)(n): n = 4, 8, 16] with fulleropyrrolidine bearing a pyridine ligand (C(60)py). Efficient energy migration occurs completely between the ZnP units of dendrimers prior to the electron transfer with increasing the generation of dendrimers to attain an extr...
متن کاملElectronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center.
Efficient electronic energy transfer (EET) in the newly synthesized dyads comprised of zinc porphyrin covalently linked to one, two or four numbers of boron dipyrrin (BDP) entities is investigated. Both steady-state and time-resolved emission as well as transient absorption studies revealed occurrence of efficient singlet-singlet energy transfer from BDP to zinc porphyrin with the time scale ra...
متن کاملMimicking the role of the antenna in photosynthetic photoprotection.
One mechanism used by plants to protect against damage from excess sunlight is called nonphotochemical quenching (NPQ). Triggered by low pH in the thylakoid lumen, NPQ leads to conversion of excess excitation energy in the antenna system to heat before it can initiate production of harmful chemical species by photosynthetic reaction centers. Here we report a synthetic hexad molecule that functi...
متن کاملEmission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II),Rh(III) Supramolecular Complexes
Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II) polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive ³MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as wel...
متن کاملEffects of cyano, ethynyl and ethylenedioxy groups on the photophysical properties of carbazole-based porphyrins.
The synthesis and photophysical properties of cyano and ethynyl substituted carbazole-based porphyrins were investigated. The introduction of ethynyl groups induced red shifts, while that of cyano groups induced blue shifts of their absorption bands, which was supported by MO calculations. Ethylenedioxy-appended porphyrins were also prepared via a coupling reaction. The conjugated and electroni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 21 شماره
صفحات -
تاریخ انتشار 2014